A Note on Randomized Element-wise Matrix Sparsification
نویسندگان
چکیده
Given a matrix A ∈ R, we present a randomized algorithm that sparsifies A by retaining some of its elements by sampling them according to a distribution that depends on both the square and the absolute value of the entries. We combine the ideas of [4, 1] and provide an elementary proof of the approximation accuracy of our algorithm following [4] without the truncation step.
منابع مشابه
A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality
Given a matrix A ∈ R, we present a simple, element-wise sparsification algorithm that zeroes out all sufficiently small elements of A and then retains some of the remaining elements with probabilities proportional to the square of their magnitudes. We analyze the approximation accuracy of the proposed algorithm using a recent, elegant non-commutative Bernstein inequality, and compare our bounds...
متن کاملA Matrix Hyperbolic Cosine Algorithm and Applications
Wigderson and Xiao presented an efficient derandomization of the matrix Chernoff bound using the method of pessimistic estimators [WX08]. Building on their construction, we present a derandomization of the matrix Bernstein inequality which can be viewed as generalization of Spencer’s hyperbolic cosine algorithm [Spe77]. We apply our construction to several problems by analyzing its computationa...
متن کاملMatrix sparsification via the Khintchine inequality
Given a matrix A ∈ Rn×n, we present a simple, element-wise sparsification algorithm that zeroes out all sufficiently small elements of A, keeps all sufficiently large elements of A, and retains some of the remaining elements with probabilities proportional to the square of their magnitudes. We analyze the approximation accuracy of the proposed algorithm using a powerful inequality bounding the ...
متن کاملTensor sparsification via a bound on the spectral norm of random tensors
Given an order-d tensor A ∈ Rn×n×...×n, we present a simple, element-wise sparsification algorithm that zeroes out all sufficiently small elements of A, keeps all sufficiently large elements of A, and retains some of the remaining elements with probabilities proportional to the square of their magnitudes. We analyze the approximation accuracy of the proposed algorithm using a powerful inequalit...
متن کاملε-Sparse Representations: Generalized Sparse Approximation and the Equivalent Family of SVM Tasks
Relation between a family of generalized Support Vector Machine (SVM) problems and the novel -sparse representation is provided. In defining -sparse representations, we use a natural generalization of the classical insensitive cost function for vectors. The insensitive parameter of the SVM problem is transformed into component-wise insensitivity and thus overall sparsification is replaced by co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1404.0320 شماره
صفحات -
تاریخ انتشار 2014